Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474104

RESUMO

Soybean (Glycine max L.) is the main source of vegetable protein and edible oil for humans, with an average content of about 40% crude protein and 20% crude fat. Soybean yield and quality traits are mostly quantitative traits controlled by multiple genes. The quantitative trait loci (QTL) mapping for yield and quality traits, as well as for the identification of mining-related candidate genes, is of great significance for the molecular breeding and understanding the genetic mechanism. In this study, 186 individual plants of the F2 generation derived from crosses between Changjiangchun 2 and Yushuxian 2 were selected as the mapping population to construct a molecular genetic linkage map. A genetic map containing 445 SSR markers with an average distance of 5.3 cM and a total length of 2375.6 cM was obtained. Based on constructed genetic map, 11 traits including hundred-seed weight (HSW), seed length (SL), seed width (SW), seed length-to-width ratio (SLW), oil content (OIL), protein content (PRO), oleic acid (OA), linoleic acid (LA), linolenic acid (LNA), palmitic acid (PA), stearic acid (SA) of yield and quality were detected by the multiple- d size traits and 113 QTLs related to quality were detected by the multiple QTL model (MQM) mapping method across generations F2, F2:3, F2:4, and F2:5. A total of 71 QTLs related to seed size traits and 113 QTLs related to quality traits were obtained in four generations. With those QTLs, 19 clusters for seed size traits and 20 QTL clusters for quality traits were summarized. Two promising clusters, one related to seed size traits and the other to quality traits, have been identified. The cluster associated with seed size traits spans from position 27876712 to 29009783 on Chromosome 16, while the cluster linked to quality traits spans from position 12575403 to 13875138 on Chromosome 6. Within these intervals, a reference genome of William82 was used for gene searching. A total of 36 candidate genes that may be involved in the regulation of soybean seed size and quality were screened by gene functional annotation and GO enrichment analysis. The results will lay the theoretical and technical foundation for molecularly assisted breeding in soybean.


Assuntos
Soja , Locos de Características Quantitativas , Humanos , Mapeamento Cromossômico/métodos , Melhoramento Vegetal , Fenótipo , Sementes/genética
2.
RSC Adv ; 11(9): 4883-4889, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424435

RESUMO

Zero-valent iron nanoparticles (ZVI NPs) display promising potential in the removal of organic pollutants and heavy metal ions for environmental remediation. However, it is crucial to prevent the oxidation of ZVI NP and control the release of Fe ions under storage and working conditions. In this study, ZVI NPs are encapsulated in single-axial and co-axial carbon nanofibers by electrospinning polyacrylonitrile (PAN)/Fe3+ nanofibrous mats with different structures and then annealing the PAN nanofibrous mats in reduction atmosphere. SEM images show that the diameter of the carbon nanofibers is affected by the structure of the nanofibers and the ZVI NPs content after the annealing treatment. The formation of ZVI NPs is confirmed through XPS spectra and HRTEM characterization. The catalytic degradation of organic pollutants by ZVI NPs encapsulated in the carbon nanofibrous mats is evaluated using methylene blue (MB). The results show that the degradation rate of MB is significantly improved when the ZVI NP content encapsulated in the nanofibers increased. MB is completely degraded by the nanofibrous mats with either the single-axial structure or the co-axial structure, but at a higher degradation rate by the single-axial structure than that by the co-axial structure. These results provide alternatives to utilize the carbon nanofibrous mats encapsulating ZVI NPs as Fe reservoir for the removal of organic pollutants in an emergent or long-term situation for environmental remediation.

3.
Front Microbiol ; 11: 1539, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793132

RESUMO

In this study, a series of bacteria capable of degrading starch and cellulose were isolated from the aging flue-cured tobacco leaves. Remarkably, there was a thermophilic bacterium, Bacillus subtilis ZIM3, that can simultaneously degrade both starch and cellulose at a wide range of temperature and pH values. Genome sequencing, comparative genomics analyses, and enzymatic activity assays showed that the ZIM3 strain expressed a variety of highly active plant biomass-degrading enzymes, such as the amylase AmyE1 and cellulase CelE1. The in vitro and PhoA-fusion assays indicated that these enzymes degrading complex plant biomass into fermentable sugars were secreted into ambient environment to function. Besides, the amylase and cellulase activities were further increased by three- to five-folds by using overexpression. Furthermore, a fermentation strategy was developed and the biodegradation efficiency of the starch and cellulose in the tobacco leaves were improved by 30-48%. These results reveal that B. subtilis ZIM3 and the recombinant strain exhibited high amylase and cellulase activities for efficient biodegradation of starch and cellulose in tobacco and could potentially be applied for industrial tobacco fermentation.

4.
Sci Rep ; 9(1): 7745, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123283

RESUMO

Dendranthema indicum var. aromaticum plant has been widely used as herbal medicine in China, however, the material basis responsible for the therapeutic benefits remains largely unclear. This study aimed to provide an optimized method for extracting and characterizing phenolic compounds in D. indicum var. aromaticum flower. Firstly, an ultrasound-assisted method combined with central composite circumscribed (CCC) design was applied to optimize phenolic compound extraction. Ethanol-acetic acid (70%:2%, v/v) was selected as solvent, and the optimal extraction condition was: extraction temperature, 57 °C; solid/liquid ratio, 1:30 g/mL; extraction time, 20 min. Secondly, an effective and economic HPLC-PDA-ESI-MSn method was established and validated for phenolic compound characterization and quantification. As a result, 14 phenolic compounds were identified, including 8 phenolic acids and 6 flavonoids, and for the first time, oleuropein derivatives, chrysoeriol, and tricin are reported in D. indicum var. aromaticum flower. The content of phenolics identified by HPLC-MSn was 6.42 ± 0.32 mg/g DW. The optimized method for extraction and characterization of phenolic compounds has significant meaning to future pharmaceutical and medicinal research on D. indicum var. aromaticum, and the results in this study can provide references for herbal research.


Assuntos
Chrysanthemum/metabolismo , Medicamentos de Ervas Chinesas/isolamento & purificação , Hidroxibenzoatos/isolamento & purificação , Antioxidantes , China , Cromatografia Líquida de Alta Pressão/métodos , Chrysanthemum/genética , Flores/química , Hidroxibenzoatos/metabolismo , Espectrometria de Massas/métodos , Fenóis/análise , Fenóis/química , Fitoterapia , Extratos Vegetais/análise , Folhas de Planta/química , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...